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Review
“Data assimilation refers to three problems in time
series analysis. Given a time seriesωk, or possible a
continuous function of space and timeω(x, t) which
may be noisy or incomplete, beginning with time
t = −T and ending att = 0, the “present,” define
three problems:

• The prediction problem What willω be in the
future?

• The filtering problem What is the best estimate of
ω now, i.e., att = 0?

• The smoothing problem: What is the best
estimate ofω for the entire time series?
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Origins of Data Assimilation
Gauss and Legendre were interested inplanetary
orbits.

• These are specified by 6 parameters, theorbital
elements.

• Three observations are necessary to determine the
orbital elements.

• If more than three observations are available
choose elements to minimize:

∑

(predicted position − observed position)2

This is theleast squares method
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Variational Methods
Given

• A model:ut − Lu = f , possibly a linear equation
that describes the evolution of small deviations
from a first-guess solution.

• Chosen to mimic the “true” stateu(t) assumed to
evolve according tou(t)

t − Lu(t) = f + b for
some random functionb

• Estimated initial conditionu(0) with random
errore0

• Observationsz = Hu(t) + eobs
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Variational Methods
Minimize the cost function:

J(u) =

∫

(ut − Lu − f)TW−1(ut − Lu − f)dt +

(u(0) − u0)
TV −1(u(0) − u0) +

(z − Hu)TR−1(z − Hu)

The minimizer ofJ is the BLUE ofu(t) if:

E(bbT ) = W

E(e0e
T
0 ) = V

E(eobse
T
obs) = R
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Variational Methods
• We begin withu a (possibly) vector-valued

function of time.
• This formulation generalizes naturally to

functions of time and space, in which case:
• L would be a partial differential operator
• The constraint on the initial condition would

be an integral
• There might be a constraint on the boundary

conditions.

We will derive all of the linearized methods from here.
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The Variational Method
Without loss of generality, we can setf = u0 = 0. so:

J(u) =

∫

(ut − Lu)TW−1(ut − Lu)dt

+u(0)TV −1u(0) +
N
∑

j=1

R−1
j (zj − Hju(tj))

2

≡ < u,u > +
N
∑

j=1

R−1
j (zj − Hju(tj))

2

The cost function defines a positive definite bilinear

form < ·, · > ( Think dot product )
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Vectors and Functions
Consider a scalar valued linear functionf(v), i.e., the
domain off is R

n and the range isR.

v =
∑

j

vjej

so

f(v) =
∑

j

vjf(ej) ≡ v · a

whereaj = f(ej).
. . . now imagine thatv is a function instead of a
vector.
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The Representer Method
Define thejth representerrj:

< rj, u >= Hju(tj)

for any admissible functionu
• The representerrepresentsthe measurement

functional in terms of the new inner product.
• This allows us to form an orthogonal

decomposition of the space of admissible
functions.
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Orthogonal Decomposition of
State Space
Write the minimizer̂u of the functionalJ , as:

û =
N
∑

j=1

bjrj + G

where thebj are constants and

< rj, G >= 0, j = 1, . . . , N
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Solution in Representer Space
The cost function then becomes:

J(u) =
N
∑

i,j=1

bibj < ri, rj > + < G,G > +

N
∑

j=1

R−1
j (zj −

∑

i

bi < ri, rj >)2

• We might as well pickG = 0

• Picking nonzeroG doesn’t change the data misfit
and can only increase the cost.
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The Representer Method
The original infinite dimensional problem is reduced
to finding a finite number of coefficientsbj:

∂J

∂bk
= 2

∑

j

bj < rj, rk > −

2
∑

j

R−1
j (zj− < rj,

∑

i

biri >) < rj, rk >

Setting∂J/∂bk = 0 leads to:

∑

j

< rj, rk >

(

Rjbj +
∑

i

< ri, rj > bi − zj

)

= 0
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The Representer Method

∑

j

< rj, rk >

(

Rjbj +
∑

i

< ri, rj > bi − zj

)

= 0

In matrix form. DefineR = diag(Rj) and
Mi,j =< ri, rj > therepresenter matrix. The solution
is then defined by:

(M + R) b = z

whereb is the vector of representer coefficients andz

is the vector of observations.
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What Value Should the Cost
Function Be at Minimum?
At the minimum,

J = zT (M + R)−1M(M + R)−1z +

(z − M(M + R)−1z)TR−1(z − M(M + R)−1z

(lots of algebra . . .)

= zT (M + R)−1z

Soz should be a random variable with covarianceM +

R andJ is a random variable withχ2 distribution on

M degrees of freedom.
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Computing Representers
Schematically:

< u,v >∼ (Mu,Mv); M ≡ ∂

∂t
− L

We want:

(Mu,Mr) = (u,M∗
Mr) = (u, δ)

So solve:

M
∗α = δ

Mr = α
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Computing Representers
Begin with the simplest case: a linear, scalar ODE:

u̇ − au = F

F , u(0) unknown. First guess:F = 0; u(0) = 0
Given measurementsyj of the system at timestj

J =

∫ T

0

(u̇ − au)W−1(u̇ − au)dt + u(0)V −1u(0) +

∑

(yj − u(tj))
2/Rj

≡ < u, u > +
∑

(yj − u(tj))
2/Rj
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Computing Representers
Thejth representer is defined by

< rj, v >= v(tj) =
∫ T

0 δ(t − tj)v(t)dt

1. Calculate therepresenter adjointαj, such that:

∫ T

0

αj(v̇ − av)dt =

∫ T

0

(−α̇j − aαj)vdt +

αjv|T0 ; αj(T ) = 0

=

∫ T

0

δ(t − tj)vdt;

2. Then solvėr − ar = αjW ; r(0) = V αj(0)
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Summary of the Representer
Method

• The linear inverse problem is potentially a
minimization problem over∞ dimensions

• In practice the observations determine only a
finite number of degrees of freedom

• A quadratic cost function can define a useful
orthogonal decomposition of state space into two
components:
• The space spanned by the representers
• Its orthogonal complement, all members of

which areunobservable, i.e., they give
measurements with value zero, by
construction.
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Summary, continued
• The minimization can thus be carried out over the

space of representers
• A potentially∞ dimensional problem is reduced

to a finite dimensional one
• The representers can (but need not be) calculated

explicitly
• The representers do not depend on the data

weights
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The Variational Approach
Calculate the first variationδJ of the cost functionJ
and setδJ = 0 A slightly more general cost function:

J(u) =
1

2

∫ T

0

∫

Ω

∫

Ω

(ut(x1, t) − Lu)W−1

(ut(x2, t) − Lu)dx1dx2dt +

1

2

∫

Ω

∫

Ω

u(x1, 0)V
−1u(x2, 0)dx1dx2 +

1

2
zTR−1z

where z is the innovation vector, with components

zj = yj − Hju.
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The Variational Approach
As before, write:

λ = (ut − Lu)W−1

Foru → u+ δu setδJ = J(u+ δu)−J(u) = O(δu2)
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The Euler-Lagrange Equations

−λt − L∗λ = zTR−1H

λ(T ) = 0

u(x, 0) = λ(x, 0)v(0)

ut − Lu = Wλ

Write λ =
∑

j ajαj where theαj are therepresenter
adjoints:

−αjt − L∗αj = Hjδ(t − tj)

α(T ) = 0

→ the representer solution: Bennett (1992, 2002) or

the tutorial at http://iom.asu.edu. Ocean Data Assimilation – p.23/57



Variational Methods: Summary
• The simplest and most common variational

methods work by minimization of a quadratic
cost function.

• In most problems in ocean data assimilation,the
state function that minimizes the mean square
data misft is not unique

• The quadratic cost function can be used to define
a decompositon of state space into the space
spanned by the representers and its orthogonal
complement

• By construction, elements orthogonal to the
representers have no effect on the model-data
misfits, and can therefore be neglected in most
cases.
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Adaptation to Nonlinear Prob-
lems
So far we have dealt withlinear problems. What to do
if the underlying model isnonlinear?

1. Calculate solution to nonlinear model, with best
estimate of IC, BC and forcing.

2. Calculate the solution to the linear inverse
problem for deviations from the nonlinear
solution

3. Add the resulting increments to IC, BC and
forcing to the original estimates

4. Go to 1., with new, IC, BC and forcing; iterate
(hopefully) to convergence
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The Filtering Problem
Given a time seriesωk, or possible a continuous
function of space and timeω(x, t) which may be
noisy or incomplete, beginning with timet = −T and
ending att = 0, the “present,” What is the best
estimate ofω?

Given current observations, we willnot revise our es-

timate of past states.
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Filtering
Consider a single step of a prediction-analysis cycle:

1. Given an initial conditionu0 at t = t0, predict the
new stateu1 at the next timet1: u

f
1 = Lu0.

2. Given observationsy at timet1, form an
improved estimateua

1 = u
f
1 + v1 of the stateu1

3. In most cases, choosev1 ∝ y−Hu
f
1 , whereHu

f
1

is the predicted value of the observed quantity.
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Filtering: Variational Formula-
tion
Cost function:

J = vT
0 P−1

0 v0 + (v1 − Lv0)
TQ−1(v1 − Lv0)

+(z − Hv1)
TR−1(z − Hv1)

z = y − Hu
f
1

Ocean Data Assimilation – p.28/57



Filtering: Variational Formula-
tion
Minimization ofJ by the representer method leads to:

v1 = (LP0L
∗ + Q)HT

[

H(LP0L
∗ + Q)HT + R

]−1
z

Recallv1 is the correction to the first guessuf
1 .
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Putting it all together

ua
1 = u

f
1 +

(LP0L
∗ + Q)HT

[

H(LPL∗ + Q)HT + R
]−1

z

This is usually broken down into steps:

1. u
f
1 = Lu0

2. P f
1 = LP0L

∗ + Q

3. K = P f
1 HT

[

HP f
1 HT + R

]−1

4. ua
1 = u

f
1 + K(y − Hu

f
1)
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Statistics
We assume our model, given by:

uj+1 = Luj

differs from the “truth” by some random errorǫ

ut
j+1 = Lut

j + ǫ

ǫ is white in time with covarianceE(ǫǫT ) = Q
The error in the state is given bye0 = ut

0 − u0

with covarianceP0 = E(e0e
T
0 ) at timet = 0.

The observation error is white with mean zero and
covariance R.
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Filtering: Statistics
Then:
The state error covariance evolves according to:

P f
1 = E(e1e

T
1 ) = LE(e0e

T
0 )L∗ + Q

The error in the corrected state should be smaller than
the error in the original state. The covariance of the
error in the updated state is:

P a
1 = (I − KH)P f

1
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The Filter Solution
Putting it all together:

1. u
f
1 = Lu0

2. P f
1 = LP0L

∗ + Q

3. K = P f
1 HT

[

HP f
1 HT + R

]−1

4. ua
1 = u

f
1 + K(y − Hu

f
1)

5. P a
1 = (I − KH)P f

1

This is theKalman Filter.
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Remarks
• This is one of many ways to derive the Kalman

filter
• Implementation is straightforward, but potentially

very expensive
• Not necessary to write complex adjoint code

Ocean Data Assimilation – p.34/57



Remarks
• There are many natural generalizations and

simplifications of the KF:
• Theextended Kalman filter: Use a nonlinear

model for the state evolution and linearized
dynamics to calculate the evolution of the
error covariance.

• Use a static error covarianceP and eliminate
the repeated calculations.

• Use a collection of model runs with randomly
chosen initial conditions and forcing to
calculate an approximate covariance. This is
theensemble Kalman filter

• Neglect errors outside of a low-dimensional
subspace of the full state space. This is the
reduced state space Kalman filter. Ocean Data Assimilation – p.35/57



The Representer Method: An
Example
A 2 layer model of Lake Kinneret

Vernieres et al.,Ocean Modelling, 2006.
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Forward and Inverse Wind
Fields

Left: Inverse estimate of mean afternoon wind field.

Right: Prior afternoon wind Ocean Data Assimilation – p.37/57



What Does a Representer Look
Like?

F

K

day 146 at 13:00

F

K

day 146 at 19:00

F

K

day 147 at 1:00

F

K

day 147 at 7:00

F

K

day 147 at 13:00

Upper layer thickness, representer for the first obser-

vation at station F. Solid line: -14.25m contourOcean Data Assimilation – p.38/57



Estimates of Lake Circulation
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a), b) upper layer thickness, forward and inverse mod-

els. c), d) lower layer Ocean Data Assimilation – p.39/57



Noise and Nonlinearity
I saw under the sun that the race is not to the swift,
nor the battle to the strong, ... , but time and chance
happen to them all.–Ecclesiastes 9:11

For a more recent reference, see Jazwinski, 1970 or

Arnold, 1974.
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The Random Walk
• Start atx = 0

• In every fixed interval of time∆t, move some
random distance∆xj

• The∆xj are independent Gaussian random
variables with variancev

• In timeT = N∆t the total distance moved is:

W =
N
∑

i=1

∆xi

〈W 〉 = 0
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The Random Walk
• In timeT = N∆t the total distance moved is:

W =
N
∑

i=1

∆xi

〈W 〉 = 0

• The mean square displacement is given by
〈

W 2
〉

= vN = vT/∆t

• If we choosev = σ2∆t we get:
〈

W 2
〉

= σ2T
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The Random Walk
“W ” is theWiener Process.

E(WtWs) = E((Wt − Ws + Ws)Ws) for s < t

= E((Wt − Ws)Ws) + E(WsWs)

= σ2s

In general,E(WtWs) = min(t, s)σ2.
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The Random Walk
Now consider a stationary random functionu:

E

(

u(t + h) − u(t)

h

u(s + h) − u(s)

h

)

=
1

h2
(2E(u(t)u(s)) − E(u(t)u(s + h)) −

E(u(t + h)u(s)))

=
−1

h2
(C(t − s + h) − 2C(t − s) +

C(t − s − h))

• C(t − s) ≡ E(u(t)u(s))
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The Random Walk
• −(C(t−s+h)−2C(t−s)+C(t−s−h))/h2 →

C ′′(t − s) ash → 0.
• More generally:

E(u′(s)u′(t)) = ∂
∂s

∂
∂tE(u(s)u(t))

∂

∂s

∂

∂t
E(W (s)W (t)) =

∂

∂s

∂

∂t
σ2min(s, t)

=
∂

∂s
σ2

{

1 if t < s

0 if t ≥ s

= σ2δ(t − s)

• by the usual formal identification of the derivative
of a step function withδ.
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White Noise
In general the power spectral density function of a
stochastic process is the Fourier transform of the
covariance function:

f(ω) =

∫ ∞

−∞
e−iωτC(t + τ, t)dτ

For “white noise,”C(t + τ, t) = σ2δ(τ) sof(ω) = σ2

= constant. So white noise, like white light, contains
all frequencies at equal power.
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Stochastic Differential Equa-
tions
TheLangevin equation:

ẋ = −αx + Ẇ

W is a random walk with
E((W(t + ∆t) − W(t))2) = σ2∆t

xt+δt − xt + αxtδt = Wt+δt − Wt

should lead formally to a meaningful limit:

dx + αxdt = dW
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Stochastic Differential Equa-
tions
but:

xt+δt − xt

δt
= −αxt +

Wt+δt − Wt

δt

E

[

(

xt+δt − xt

δt

)2
]

= α2x2
t +

σ2

δt

so Langevin’s equation:

dx + αxdt = dW

does not make sense as a classical ordinary differential

equation.
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Stochastic Differential Equa-
tions
But weshouldbe able to make sense of it:

eαt|dx

dt
+ αx =

dW

dt
d

dt
(eαtx) = eαtdW

dt

x = x(0)e−αt +

∫ t

0

e−a(t−s)dW

ds
ds
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The Langevin Equation

eαt|dx

dt
+ αx =

dW

dt
d

dt
(eαtx) = eαtdW

dt

x = x(0)e−αt +

∫ t

0

e−a(t−s)dW

ds
ds

so:

E(x2) = (x(0)e−αt)2 +
∫ t

0

∫ t

0

e−α(t−r)e−α(t−s)E(
dW

dr

dW

ds
)drds
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The Langevin Equation, cont’d

E(x2) = (x(0)e−αt)2 +
∫ t

0

∫ t

0

e−α(t−r)e−α(t−s)E(
dW

dr

dW

ds
)drds

= (x(0)e−αt)2 + e−2αt

∫ t

0

σ2e2αsds

= (x(0)e−αt)2 + σ21 − e−2αt

2α
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Stochastic Differential Equa-
tions
So instead of writing:

dx

dt
+ αx =

dW

dt

write:

dxt + αxtdt = dWt

as notation for

xt − x0 = −
∫ t

t0

αxtdt +

∫ t

t0

dWt
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The Langevin Equation
• Here we will get away with assuming
∫ t

t0
dWt = W (t) − W (0) ∼ N(0, σ2(t − t0)

• Stochastic differential equations (SDE’s) such as
this must be modeled with special numerical
techniques, e.g.,

xj+1 = (1 − α∆t)xj + (∆t)1/2σwj

wherewj ∼ N(0, 1) may be obtained from a
random number generator.
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Numerical Treatment of the
Langevin Equation

• The variance ofx afterN steps is:

V ar(xN ) = ∆tσ2 (1 − α∆t)2N − 1

(1 − α∆t)2 − 1

Compare to the solution obtained above:

V ar(xN ) = σ21 − e−2αt

2α
, t = N∆t

• The difference equation converges as∆t → 0.
• The presence of the

√
in the discretization

indicates that special numerical techniques are
required for SDE’s.
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Stochastic Differential Equa-
tions

• One correct way to discretize the Langevin
equation is:

xj+1 = (1 − α∆t)xj + (∆t)1/2σwj

• A common error in dealing with SDE’s is the
incorrect use of∆t instead of

√
∆t as in:

xj+1 = (1 − α∆t)xj + ∆tσwj

• In order to deal with SDEs in detail we need to
re-invent calculus
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Summary
• We have explored solving the linear inverse

problem by the least squares method
• In variational form, the cost function gives a

natural orthogonal decomposition of space and
allows us to reduce the problem to manageable
size.

• The representer method is one way to derive the
Kalman filter.

• Fully general treatment of noisy nonlinear
problems requires that we re-invent calculus
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Final Thought
• Data assimilation is a highly technical subject
• When you understand the technical aspects, you

are at thebeginning, not the endof the subject.

Ocean Data Assimilation – p.57/57
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